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COMPUTER SYSTEM AND METHOD FOR INDEXING AND RETRIEVAL OF PARTIALLY
SPECIFIED TYPE-LESS SEMI-INFINITE INFORMATION

TECHNICAL FIELD

The present disclosure relates to a device, system and method for data base processing of

partially specified type-less semi-infinite information.
BACKGROUND

Information- or data stored in a data base (the term data base will be used, throughout this
document, in a very general sense to mean any system supporting information storage,
search and retrieval) is typically organized in records where each record has one or more
fields. Fields can have different types such as text strings, integers, etc., and are typically
also associated with field names. The collection of field names and types of records defines
the type of the entire record (sometimes only the types of the fields are considered to
constitute the type of a record, such as structures and unions in the C programming
language, but the intended usage of a type becomes clearer when including field names in

record types as well).

In general, records are completely specified. That is, if there are records representing
persons, consisting of name, age, and sex, these three fields are typically specified in each
record stored in the data base - records where age is unspecified etc. are not present.
Typically, it is not possible to store wild cards or partially specified information, e.g. intervals,
in fields directly. This requires an extension of the record type where each partially specified
field is either associated with an extra Boolean field indicating whether the field is specified or
not, e.g. age_is_specified, or represented by two fields constituting an interval, e.g. age_min

and age_max.

To support fast retrieval of records, data bases are typically augmented with one or more
indices. An index is a separate data structure where the values from one field in all records
are used as keys and each key is associated with all records where the value stored in that
field of the records is the same as the value of the key. There may be one index per field or
fields that are not indexed and there may also be indices where the keys are created by

combining values from several fields into tuples.

Different kinds of indices require different kinds of data structures and the types of queries to

be supported also impacts the index requirements. For example, if the goal is merely to

search for a single age, in the example above, and each record has a specified age value
1
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(i.,e. not an interval), an array with direct indexing may be used whereas if the goal is to
select all records where the age value falls within a certain range it may be better to use
another data structure (in this example there is no need though as the size of the universe,

i.e. the number of possible values, of age is very small).

There may also be fields, or entire records for that matter, that consist of binary data which
may or may not have a structure and where the structure, assuming there is one, may or
may not be known or may or may not be considered. Such data is sometimes referred to as
Binary Large Objects (BLOB’s). BLOBs are typically fully specified, i.e. each bit is either O or

1, are typically not indexed.

In traditional data bases, the types of all different kinds of records to be stored in the data
base are known when data is inserted into the data base. In addition to record types, some
knowledge of which kind of queries to support is also typically available. The data base can
therefore be configured in advance by means of a data scheme and it becomes trivial to
properly store incoming records as well as to maintain all indices on-the-fly providing an at-

all-time query ready data base from start.

This is an excellent approach if both the structure of incoming data as well as which queries

to be supported are known beforehand.

However, if the need for a new unthinkable query arrives after populating a traditional data
base with trillions of records it may be challenging to build an index from scratch due to the
amount of data. Even in-the-event that it is possible to build a new index, it will take time and
thus be a long delay, before the index is completed, and the new query can be supported.
Building a new index from a large data set is also associated with a high computational cost
for going through all the data, which is required to build a new index, and the computational
cost for building an index is in the same magnitude as the cost for brute force processing of
the query by scanning through all records. This is referred to this as the Unthinkable Query
Problem and corresponding processing of unthinkable queries as Unthinkable Query
Processing (UQP).

Efficient solutions to the Unthinkable Query Problem are not possible to implement with
traditional data bases, due to the high cost of index construction from scratch and or brute
force scanning, thus severely impacting the value of data stored in huge traditional data
bases. Data Mining/Data Science may either require brute force approaches such as going
through all data or new index construction to support special queries for data cleansing etc.
which will limit the ability to experiment with the data as the cost for each “What if we look at
the data this way?’-experiment will be way too high. Furthermore, since the cost for each
2
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such experiment increases with the amount of data available and the possibility to learn more
is also higher the more data that is available, the impact of not being able to implement
efficient UQP in traditional databases is that the more data that is available the less it is

possible to learn for a reasonable computation cost.

At the same time as the amount of available information to analyze increases exponentially
there is an increasing demand for dealing with unstructured data. When dealing with
unstructured data it may not be known what the data represent when it is gathered- and
entered-into the data base. As-a-consequence, learning what the data represents constitute
the first steps in working with the data and this can typically be initiated first after a large
amount of data is collected. Not knowing what the data represent from start makes it
impossible to define record types/data schemes to store the data and thus all incoming data

records must therefore be stored as BLOBs.

Furthermore, with large amounts of unstructured data there may be incomplete records (e.g.
as result of noise, lack of measurements etc.) and in unstructured data this is represented by
wildcard bits meaning that it is not known if the bit is O or 1. Each record must therefore be
represented by a fernary bit string where each bit either has the value 0, 1 or wildcard
(usually denoted by an asterisk *) and consequently each record must therefore be stored as
a Ternary Large Object (TLOB). Different TLOB’s may represent different pieces of
information with different sizes (e.g. DNA molecule vs. registration plate). Furthermore, by
allowing wildcards, the information content (i.e. number of non-wildcard bits) of a TLOB can
be very small with respect to the effective size (i.e. number of bits) of the TLOB. Therefore,
TLOB’s are considered to be semi-infinite ternary bit strings for all practical purposes. Semi-
infinite ternary bit string means a ternary bit string where the first bit has index zero and the
following bits are numbered 1, 2, 3, and so on up to an arbitrarily large index for the last bit.
In practice the ternary bit strings processed are limited in size by the application and/or by
the memory of the computer running the data base where the processing takes place. The
key properties (and challenges) when processing data consisting of semi-infinite ternary bit

strings are:

o Records may be partially specified (fully specified only if there are no wildcard bits).

o Records are constituted by unstructured data and are thus type- and data schema-
less.

o Records are not possible to index using traditional data bases indexing techniques.

o Records may be very large, i.e. hundreds of thousands of ternary bits.
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This entire problem space is referred to as the Partially Specified Type-less Semi-infinite
Information Problem (PSTLSIIP). Clearly, any solution to PSTLSIIP also solves the Partially
Specified Type-less Information Problem (PSTLIP), the Type-less Semi-infinite Information
Problem (TLSIIP), and the Type-less Information Problem (TLIP). PSTLSIIP, PSTLIP, TLSIIP
and TLIP are referred to collectively as Partial Unstructured Information Processing. As-a-
result from the lack of ability to index partial unstructured information any query becomes an
unthinkable query and thus Partial Unstructured Information Processing requires a solution to
the Unthinkable Query Problem and thus UQP. Furthermore, the more partial and
unstructured the data is the more there is to learn from unstructured data and it follows that
when using traditional data bases, the more it is necessary need to learn about the data, the

less it is possible to learn for a reasonable computation cost.

SUMMARY

Embodiments presented herein advantageously provides Partial Unstructured Information
Processing, constituting storage, indexing, querying and retrieval of partially specified
unstructured data, featuring a Quantum Clustering Algorithm (QCA) (101) that partitions data
records in different clusters, a Compressed Ternary Tree (CTT) (111, 112, 113) that replaces
all conceivable indices for each cluster, and a Virtual Query Processor (VQP) (120) that
converts queries to raw Compressed Ternary Tree queries and filters (121, 122, 123), among

other things.

According to a first aspect, there is provided a system for Partial Unstructured Information
Processing (100), constituting storing, indexing, querying and retrieval of partially specified
unstructured data, featuring a Quantum Clustering Algorithm (101) that partitions data
records in different clusters such that the data in each cluster can be indexed efficiently, a
Compressed Ternary Tree (111, 112, 113) that replaces all conceivable indices for each
cluster thereby providing Unthinkable Query Processing (110) for each cluster, and a Virtual
Query Processor (120) that converts traditional data base queries to raw Compressed

Ternary Tree queries and appropriate filters (121, 122, 123).

According to another aspect, there is provided a method (200) for Partial Unstructured

Information Processing, constituting storing, indexing and retrieval of partially specified

unstructured data, featuring a Quantum Clustering Algorithm (201) that partitions data

records in different clusters wherein each cluster is associated with a quantum key, wherein

keys, represented by semi-infinite ternary bit strings, that are added (202) to a cluster (210,

220, 230) are attached (212, 222, 232) to the quantum key (211, 221, 231) associated with
4
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the cluster and keys that are removed (203) from a cluster are detached (213, 223, 233) from
the quantum key (211, 221, 231) associated with the cluster, wherein a new key to be
inserted is matched (250) against the quantum key of each existing cluster, wherein the best
match is compared (251) to a threshold (252) to determine if the match is sufficiently good,
wherein the key to be inserted is added (260) to the cluster with the best matching quantum
key if the match is sufficiently good, wherein a new cluster is created (270) followed by
adding the key to be inserted to the new cluster (240) if the best match is not sufficiently
good, a Compressed Ternary Tree that replaces all conceivable indices for each cluster
wherein each cluster is associated with a Compressed Ternary Tree (214, 224, 234, 244),
wherein the new key is inserted (280) in the Compressed Ternary Tree of the selected
cluster, and a Virtual Query Processor that converts (290) traditional data base queries to
raw Compressed Ternary Tree queries (raw query) and appropriate filters, wherein a raw
query consists of start, length, pattern and negate, wherein the pattern of a raw query are
either a ternary bit strings or a general integer intervals converted (291) to intervals that can
be represented using power-of-2-completion, wherein proper set operations such as union
and intersection are used to combine (292) results from partitioned queries to produce the
result of the original query, wherein intersection pruning (293) is used to increase the speed

for executing complex queries.

According to a further aspect there is provided a computer program loadable into a memory
communicatively connected or coupled to at least one data processor, comprising software
for executing the method according to any of the embodiments presented herein when the

program is run on the at least one data processor.

According to yet another aspect there is provided processor-readable medium, having a
program recorded thereon, where the program is to make at least one data processor
execute the method according to of any of the embodiments presented herein when the

program is loaded into the at least one data processor.

BRIEF DESCRIPTION OF THE DRAWINGS

The invention is now to be explained more closely by means of preferred embodiments,

which are disclosed as examples, and with reference to the attached drawings.

Figure 1 shows a schematic overview of a system according to one or more

embodiments;
Figure 2 is a flow chart of a method according to one or more embodiments;

5
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DETAILED DESCRIPTION
Introduction

The present disclosure describes a system and method for Partial Unstructured Information
Processing, constituting storing, indexing, querying and retrieval of partially specified
unstructured data, featuring a Quantum Clustering Algorithm (101) that partitions data
records in different clusters such that the data in each cluster can be indexed efficiently, a
Compressed Ternary Tree (111, 112, 113) that replaces all conceivable indices for each
cluster thereby providing Unthinkable Query Processing (110) for each cluster, and a Virtual
Query Processor (120) that converts traditional data base queries to raw Compressed

Ternary Tree queries and appropriate filters (121, 122, 123).

An example of a problem that can be mitigated using embodiments presented herein is the
problem of efficiently processing partially specified unstructured information in a data base,

including processing of unthinkable queries.

Embodiments of the present disclosure provide a Quantum Clustering Algorithm (101), a
Compressed Ternary Tree (111, 112, 113), and a Virtual Query Processor (120) combined to

provide a system and method for Partial Unstructured Information Processing.

In what follows there is provided a brief description of the three core components of the

invention.

A data record consisting of a semi-infinite TLOB is referred to as a key. The invention is
completely agnostic with regards to the underlying key representation, i.e. how keys are
represented and stored in the computer, and only requires the following operations on keys

to be supported:

¢ Create key

Create a new key with all bits set to wildcard.
e Get bit from key

Read the value (0, 1 or *) of a bit with a given index i = 0 from the key
e Set bit in key

Write the value (0, 1, or *) to a bit with a given index i = 0 in the key.
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The invention as such does not impose any restriction on the maximum length, i.e. maximum
bit index plus one, of a key but for practical reasons the index can size can be limited to the
number of values that can be stored in a word in the computer. In some embodiments,
tailored to address specific applications, the maximum size a key can be quite limited (e.g.
packet classification in a computer network using 384-bit keys). Besides the necessary
operations on keys mentioned above, it is also practical to be able to destroy keys and
reclaim allocated memory (if automated garbage collection is not available) as well as to

clone keys.

In addition to the underlying key representation, the invention is also agnostic with regards to
how keys are stored. The storage location can be a file on disk, an array in main memory, a
key-value-store data base (where the key is associated with a handle) or something else. In
some embodiments, keys are organized in an array of slots 0, 1, 2, 3, ... where the key
stored in a slot with lower number has higher priority. The purpose of this is to support lookup
of the key with highest priority rather than all matching keys. A person skilled in the art will be

able to implement other schemes to support lookup of the key with highest priority.

The purpose of the Quantum Clustering Algorithm (101) is to partition the set of keys in
clusters (210, 220, 230, 240) such that keys of each cluster can be efficiently represented by
a Compressed Ternary Tree (111, 112, 113, 214, 224, 234, 244). The detailed description
provides a more thorough description of what this means exactly but for now it is sufficient to
disclose that it relates to how easy it is to distinguish keys from each other (keys that are
easy to distinguish from each other should be in the same cluster and keys that are hard to

distinguish from each other should be in different clusters).

After the new key is stored in the storage location, the key is matched (250) with each
existing cluster to determine if there is one-or-more (preferably only one) cluster with
sufficiently good match (251, 252) in which case that cluster is selected (260) (or the best
matching cluster if there is a sufficiently good match with several clusters) followed by
inserting the key in the selected cluster. If no cluster with sufficiently good match exist, a new
empty cluster is created (270), and the new key will be the first key inserted in that new
cluster. Each cluster is associated with a quantum key (211, 221, 231, 241) that represents
the combined set of keys that belong to the cluster. The match (250) between a key and a
cluster is computed by matching the key with the quantum key (211, 221, 231, 241), for that
cluster, to obtain a real number value between zero and infinity, where lower number means

better match (this is described in detail below).
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After selecting cluster, the key is inserted into the, possibly empty, Compressed Ternary Tree
(214, 224, 234, 244) associated with the cluster followed by attaching (212, 222, 232, 242)
the key to the quantum key (211, 221, 231, 241).

To simplify deletion, a reference to the cluster where an inserted key is located is recorded.
Deletion is then achieved by simply detaching (213, 223, 233, 243) the key from the quantum
key of the cluster and removing the key from the Compressed Ternary Tree (214, 224, 234,

244) associated with the cluster.

For clarity, when discussing lookup, the key to lookup is referred to as the query key and the
keys stored in the data base as fable keys. The purpose of lookup is to find the set of all
table keys that matches a query key. The set of matching table keys is referred to as the
result of the lookup. This lookup operation corresponds to a select operation in a traditional

data base.

Raw Compressed ternary Tree queries are executed by looking up the query key. Lookup of
a query key is achieved by looking up the query key in the Compressed Ternary Tree for
each cluster and accumulating the result. There are various ways to accumulate the result. In
some embodiments, the result is accumulated in a linked list of matching keys and in other
embodiments the result is represented by set bits in a bit mask that represent all possible
slots and where each slot is associated with a bit location (bit set means match). Other
representations are also possible. In fact, any representation suitable for representing a set

of entities can be used to represent the result from lookup.

A query key is represented in the same way as a table key and must support the same set of

operations. This allows for considerable generality when crafting data base queries.

Example: Consider a large set of table keys where it is suspected that, in some
of these keys, the bits starting with index 32 and six bytes forward represents
Swedish license plates in ASCI/I (*“CONDITION”). Swedish license plates
(except so called “vanity plates”) have the format <A-Z> <A-Z> <A-Z> <0-9>
<0-9> <0-9> (assuming only capitals and with some exceptions where the
three-letter combination result in profanity). The ASCII code for A, Z, 0, and 9
are 65, 90, 48 and 57, respectively, and the corresponding binary
representations are 01000001, 01011010, 00110000, and 00111001,
respectively. Observing that the binary representation of all letters is of the form
010**** and the representation of all digits are of the form 0011**** (some stray

characters that are neither letters nor digits also match these two patterns). To
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filter out table keys satisfying CONDITION it suffices to craft a query key where
key bits 32 and forward are

01 O*****O1 O*****O1 0*****001 1 ****001 1 ****001 1 kkkk

(all other bits are wildcard) followed by looking up the query key. The resulting
table keys may satisfy CONDITION but are not guaranteed to as there are stray
characters matching but the table keys that are not part of result are
guaranteed not to satisfy CONDITION.

In the example above, a query key is crafted manually to specifically filter out table keys with

respect to a given criteria. This is the role of the Virtual Query Processor (120). It converts

traditional data base queries such as “select entries where age > 15” to a sequence of

Compressed Ternary Tree queries and a function for converting the results into a single

result.

Example: Assume that age is an 5-bit field starting at bit index 128. Then the
expression “>15” corresponds to binary numbers where bit 4 is set. Hence, the
corresponding Compressed Ternary Tree query key will only have bit 132 set to

1 and all other wildcards.

In many cases it is not possible to represent a traditional query with a single Compressed

Ternary Tree query. In the example above, the interval is easily represented by specifying

only a single bit. Intervals in general must be represented as a union of several patterns.

Example: Let the key consist only of 4 bits and consider the query “select
entries where 0 < key < 6”. In this case, the bit patterns matching the query are
0001, 0010, 0011, 0100, and 0101. To match these, and only these, bit
patterns three queries Q1 = 0001, Q2 = 001*, and Q3 = 010* are needed, and
the original query is executed by looking up each of Q1, Q2, and Q3 and
computing the union (i.e. set union) of the results. That is if Ri = lookup(Qi),

then
“select entries where 0 < key < 6”=R1+ R2 + R3,

Where “+” denotes set union.

This concludes the brief description of the invention.

System architecture
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Below, embodiments of the inventive system are described in more detail, with reference to

Figs. 1.

The purpose of Quantum Clustering Algorithm (101) is to partition the keys in clusters such
that keys of each cluster can be efficiently represented by a Compressed Ternary Tree (111,
112, 113, 214, 224, 234, 244). This is achieved by maintaining a quantum key that combines
all keys of each cluster. A quantum key is an array of quantum bits each represented by two
counters ny, and ny. There is one quantum bit for each bit index in keys so in essence a
quantum key is a semi-infinite array of quantum bits. A quantum key also consists of a

counter n used to keep track of how many keys that are attached to the quantum key.

A quantum key of an empty cluster is referred to as an empty quantum key and np =n; =0

for all bits and n = 0.

When adding a new key to a cluster it is affached (212, 222, 232, 242) to the corresponding
quantum key (211, 221, 231, 241). This is achieved by going through all bits of the key and
for each bit equal to 0 counter n, of the corresponding quantum bit is increased by one and
for each bit equal to 1 counter n; of the corresponding quantum bit is increased by one —

wildcard bits are ignored. Attachment is concluded by increasing n by one.

When a key is removed from a cluster it is detached (213, 223, 233, 243) from the
corresponding quantum key (211, 221, 231, 241). This is achieved in the same way as when
attaching a key except that counters are decreased by one rather than increased by one for

each non-wildcard bit if the key. Detachment is concluded by decreasing n by one.

Matching (250) a query key K, consisting of ternary bits K. bit[0], K. bit[1], ..., with a quantum
key Q, consisting of quantum bits Q.qgbit[0], Q. gbit[1], ..., is achieved as follows. First a
counter N is set to Q.n if K is not attached to Q and Q.n — 1 if K is not attached to Q followed
by initialization of a variable z,.. = 0. This is followed by going through all bits of the query
key. For each bit K. bit[i] = 0, z,.. is increased by Q. gbit[i]. n; /N and for each bit K. bit[i] = 1,
Zacc 1S increased by Q. qbit[i]. ng/N. After going through all bits, the result from matching K

with Q is computed as 1/z,.

As mentioned above, the cluster with the best match between the quantum key and the
qguery key is chosen is the match is good enough. There is however an exception to this. If
there is a cluster containing a key identical, i.e. not only matching but truly identical, to the
query key that cluster is chosen even without matching against the quantum key. Good
enough means that the result from match is less than or equal to a configurable threshold

value match threshold.

10
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At regular intervals table keys are inspected to determine if they still belong to the best
cluster. These inspections are necessary since clusters evolve and the cluster with a good
match when the key was inserted may have changed, due to repeated insertions, resulting in
a bad match. If there is another cluster with a better match, the key is removed and added to
that cluster instead. If there is no cluster with sufficiently good match the key is inserted into
a new cluster. This kind of inspection and re-clustering is part of the maintenance of the data

base.

Each cluster is associated with a Compressed Ternary Tree (111, 112, 113, 214, 224, 234,
244) containing the keys.

In what follows is a description of Compressed Ternary Trees in general as well as
Compressed Ternary Trees with certain properties, that distinguish them from Compressed
Ternary Trees in general. A Compressed Ternary Tree having a certain <property> is usually

referred to by <property> CTT to distinguish it from a Compressed Ternary Tree in general.

In the simplest embodiment a basic Compressed Ternary Tree (basic CTT) is used. A basic
CTT is recursively defined as follows. It is either empty, a leaf, or a node. A leaf consists of a
list of keys and a node consists of three children child,, child,, child,, which are all trees,
referred to as subtrees, and unsigned integer index. For each node and non-empty child of
the node the node is referred to as the parent of the child. The node at the top of the
Compressed Ternary Tree which does not have a parent (or has an empty parent) is called

the root.

The key operation of a Compressed Ternary Tree is discrimination which is the process of
analyzing a set of keys and finding a bit indices where the bit with said index in some of the
keys are 0, in some of the keys 1, and in some of the keys *, thereby obtaining a partition of
the original set of keys into a O-set, a 1-set, and a *-set. Different bit indices yield different
partitions and the goal is to find the best bit index. There are different ways to optimize this
but, in general, the 0-set and 1-set should be roughly equally large while keeping the *-set as
small as possible. If it is not possible to find a bit index such that neither of the 0-set nor the

1-set is empty, discrimination failed.

Insertion of a new key in a basic CTT is achieved as follows. If the tree is empty, a new leaf

containing the key is created. If the tree is a leaf, and the new- and existing keys can be

discriminated, a new empty (i.e. its children are empty) node with the discriminating bit index

is created and the new key as well as the keys stored in the leaf are recursively inserted into

the node. If discrimination failed the new key is inserted in the leaf. If the tree is a node, the

bit of the new key with the same bit index as the index stored in the node, the pivot bit, is
11
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inspected. If the pivot bit is 0 the key is recursively inserted in child,, if the bit is 1 the key is
recursively inserted in child,, and if the bit is * the key is recursively inserted in child,. The list
of keys stored in the leaves of a basic CTT is treated as a set with no order between the keys
and consequently a basic CTT may not contain identical keys, i.e. pairs of keys K; and K,
such that vi: K;. bit[i] = K,. bit[i].

In an alternative embodiment ordered Compressed Ternary Tree (ordered CTT) is used. An
ordered CTT identical to a basic CTT except that keys are ordered by priority in each leaf.
Priority can be a slot number, memory address, time stamp, real number, or something else
which is unique, so that ties can be broken, for each key. An ordered CTT may contain

identical keys since they can be distinguished from each other by the priority.

In yet another embodiment a /azy Compressed Ternary Tree (lazy CTT) is used. In a lazy
CTT, the discrimination attempt when inserting a key in a leaf is postponed until some point
later in time (e.g. before the first lookup) to achieve lower amortized cost for updating the tree

at the expense of higher costs for rebuilding larger portions if the tree.

In yet another embodiment a replicating Compressed Ternary Tree (replicating CTT) is used.
In a replicating CTT, the child, of selected nodes are /ocked, effectively turning such nodes
into binary nodes rather than ternary nodes, and keys where the pivot bit is * are inserted in
both child, and child, of such nodes. The criteria for selecting which nodes that are locked

and turned into binary nodes can be based on different metrics such as:

o The depth of the tree defined as
o zero for the root node/leaf and
o depth of parent node plus one for other nodes/leaves.
o The height of the tree defined as
o zero if the tree is empty,
o number of keys stored if the tree is a leaf, and
o one plus the maximum height of any of the subtrees if the tree is a node.
e The cost of the tree defined as
o zero if the tree is empty,
o number of keys stored if the tree is a leaf, and
o one plus cost of child, plus maximum of cost of child, and cost of child, if the
tree is a node.
o The density of the tree defined as
o zero if the tree is empty,
o number of keys stored if the tree is a leaf, and
o the sum of densities of the subtrees minus the number of keys that are
replicated at the node (i.e. stored in both sub-trees) if the tree is a node.
o The weight of a tree defined as
o zero if the tree is empty,
o number of keys stored if the tree is a leaf, and
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o the sum of weights of the subtrees if the tree is a node.
o The frequency of a tree defined as the number of times the root of the tree has been
visited during lookup and update operations.

Note that density and weight are equivalent for a non-replicating CTT.

The memory of a computer is organized in a hierarchy with several levels where the access
speed decreases as the size increases with increasing level. For example, there may be a
level 1 cache which is very fast, very small, and integrated in the microprocessor, a level 2
cache being a slightly slower and larger, /evel 3 being the main DRAM memory and /evel 4
being an SSD disk, and /eve/ 5 being a huge and slow spin disk. Between each pair of levels,
there is a certain amount of level specific data, referred to as the block size of the higher of
the two levels, that can be retrieved in unit access cost, i.e. the time it takes to access the
data from a level and copy it to the previous level (e.g. from level 5 to level 4). Unit cost
means that the cost for accessing the second, third, fourth, and so on, byte is practically zero
once the first byte has been accessed if the following accesses takes place reasonably close
in time after the first byte has been accessed. The block size between different levels can be
quite different and are typically increases with increasing level and memory size on the level.
If an application use only a small amount of data, all data may fit in the first three levels and
the number of blocks that has to be retrieved from level 3 determines to a high extent the
total time required for the computation (total time roughly equals number of blocks retrieved
times time required for retrieving one block) whereas the running time for an application that
use huge amounts of data may be determined by the number of blocks that has to be fetched
from level 5 to level 4. Depending on the application, amount of data, expected data access
pattern and the properties of the memory hierarchy (total size, block size, and access cost)
there is an optimal block size which means that if data can be organized such that the
number of retrievals of blocks of optimal block size is minimized the total time for the
computation is also minimized. Determining optimal block size is a straight forward
optimization problem and not really part of the invention. As a rule-of-thumb the
microprocessor cache line size (512-bit for Intel microprocessors) should be used if most
data fits in- and memory accesses takes place in main memory whereas a larger block size
related to disk block size should be considered if there are huge amounts of data. Note also
that applications where data must be retrieved from another machine using data
communication is becoming more and more common. In such cases, properties of the data
network as well as server characteristics must be considered when determining the optimal

block size.
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In yet another embodiment a packed Compressed Ternary Tree (packed CTT) is used. In a
packed CTT, the nodes, and to some extent also the leaves, are organized in memory to
achieve maximum locality of memory accesses during lookup. This is achieved by
recursively relocating nodes and their descendants to memory blocks of optimal block size.
This process is referred to as packing. Packing is performed recursively top-down in rounds.
A round starts with a subtree and an empty farget memory block of optimal size. The root of
the subtree is then added to an empty set of candidates for relocation to the target memory
block. From the set of candidates, the best candidate (discussed below) is then repeatedly
selected and relocated to the target memory block. If the relocated candidate is a node its
non-empty children are added to the set of candidates. This is repeated until the round is
completed, which occurs either when the target memory block becomes full or when the set
of candidates becomes empty, whichever happens first. If the set of candidates is non-empty
at the end of a round, a new packing round is performed recursively for each of the subtrees

represented by the set of candidates as roots.

There are several ways to select the best candidate for relocation but before discussing this,
a detailed description of how Compressed Ternary Tree lookup is performed is provided.
Lookup in the whole data base is performed by performing lookup in the Compressed
Ternary Tree of each cluster and computing the set union of the results. Lookup in one
Compressed Ternary Tree starts with at the root and is performed recursively. If the tree is
empty, lookup returns the empty set @. If the tree is a leaf, the query key is compared against
each of the table keys stored in the leaf and the set of matching table keys is returned. A pair
of compared keys matches if and only if Vi: K;.bit[i] = K,. bit[i] + K;. bit[i] = * + K,.bit[i] =
*, where + denoted logical “or”. If the tree is a node, the pivot bit of the key is inspected. If
the pivot bit is 0, lookup is performed recursively in child, and child, and the result is the set
union of the two lookups. If the pivot bit is 1, lookup is performed recursively in child, and
child, and the result is the set union of the two lookups. If the pivot bit is *, lookup is
performed recursively in all three children and the result from lookup is the set union of the

three lookups.

When choosing the best candidate for relocation during packing the goal is to minimize the
number of memory blocks accessed for lookup. Therefore, it makes sense to either choose
the candidate with largest cost or height (see description of metrics in the description of
replicating CTT above). If lookups are highly targeted towards a limited set of keys and this is
expected to continue it makes sense to consider the frequency to make it cheaper to traverse
paths to leaves which are more commonly traversed. In general, the criteria for best

candidate selection should be chosen with the application in mind and should also consider
14
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any information or prediction about access patterns. As with the problem of determining
optimal block size, this is also a straight forward optimization problem where the optimal
solution can be a function that combines all available metrics and statistics as well as usage
scenarios. It is also possible to change the strategy for candidate selection on-the-fly either
manually or automated with- or without the help of arbitrary powerful Al-powered decision

support systems.

In yet another embodiment, a compressed Compressed Ternary Tree (compressed CTT) is
used. A compressed CTT is a packed CTT where the nodes stored in the same memory
blocked are further compressed using various techniques. The most straight forward
technique exploits the fact that a reference to another node stored in the same memory block
can be represented using considerable fewer bits than a reference to a node stored in an
arbitrary memory location. This is referred to as pointer compression. Another technique to
obtain a compressed CTT is to encode the structure of the tree stored within the memory
block using only a few bits per node. This is referred to as structure compression. Yet
another technique to implement a compressed CTT is to use a catalogue of templates that
represent certain tree structures and then use a template identifier to record which template
is used. This is referred to as femplate compression. The compression techniques described
are merely examples and are not intended to limit the scope of the invention. A person skilled
in the art is-able-to combine two or more of the compression techniques described to obtain

new hybrid compression techniques that captures the spirit of the invention.

The role of the Virtual Query Processor (120) is to support conversion (290) of traditional
data base queries to sequences of raw Compressed Ternary Tree queries and operations
(291, 292, 293) on the results of these queries. Whereas a traditional data base query
addresses fields of records, the present invention addresses type-less TLOB’s. In the
absence of well-defined fields, queries must instead address specific bit indexes. A Virtual
Query Processor query consist of the following:

o start which is the bit index where the query starts,

o Jength which is the number of bits addressed by the query, and

e pattern which is a pattern to match.
e negate which is a Boolean that changes match to mismatch and vice versa.

There are two different kinds of patterns:

e ternary bit mask and
e integer intervals.

Both kinds of patterns can represent integer exact match queries.
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Example: Suppose that it is known that there is an 5-bit field, starting at bit 72,
in the key that represent age and the goal is to select all keys where age > 15.
The Virtual Query Processor query to achieve this is written as “select start =
72, length = 5, pattern = ternary(1***), negate = FALSE”.

Some alternative ways of writing an equivalent query are “select start = 72,
length = 5, pattern = interval(16, «), negate = FALSE” and “select start = 72,
length = 5, pattern = interval(0, 15), negate = TRUE”.

Ternary patterns do not need to be converted and neither do exact number patterns.
Intervals however typically needs to be converted to ternary patterns before performing
lookup (the above example being an exception though). This is achieved by computing a
minimal set of ternary patterns such that any number in the interval specified matches at
least one of the ternary patterns. This conversion is sometimes referred to as power-of-2-
completion. The number of ternary patterns required to represent an interval is in the worst
case proportional to the base 2 logarithm of the size of the interval. An example of an interval
that is particularly troublesome is 0 < x < 255. This interval must be partitioned into the
intervals 1 <x<1,2<x<3,4<x<78=<x <15 and so on. When intervals are
partitioned a single query is turned into a sequence of queries. The Virtual Query Processor
(120) is responsible for executing such queries and applying proper set operators on the
results to obtain the result expected from the original query. In this example, the result is the
set union of the results from the individual queries in the partition. The more queries in a
partition, the longer it will take to process the original query. In this case, it would have been
better to convert the original query is 0 < x < 255 to two queries x # 0 and x # 255 (the
query is addressed towards an 8-bit field). Using this conversion, the result of the original
query is computed as the set intersection of the results of the two queries. That is, only the
keys that matches both queries should be selected. When computing intersection between
results from queries the Compressed Ternary Tree nodes can be tagged during traversal
when looking up the first query to speed up the Compressed Ternary Tree lookups of the
second query by skipping traversal into subtrees that are not tagged. Visited nodes are again
tagged during the lookup for the second query to further speed up the third query and so on.
This method of tagging effectively prunes the search space and improves the query
execution speed tremendously for intersection queries and is referred to as intersection

pruning.

Although specific embodiments have been described herein for purposes of exemplification,

it is understood by those of ordinary skill in the art that the specific embodiments described
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may be substituted for a wide variety of implementations without departing from the scope of
the present invention. Those of ordinary skill in the art will readily appreciate that the present
invention could be implemented in a wide variety of embodiments, including hardware and
software implementations, or combinations thereof. This disclosure is intended to cover any

embodiment defined by the wording of the appended claims.
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CLAIMS

. A system (100) for Partial Unstructured Information Processing, constituting storing,

indexing, querying and retrieval of partially specified unstructured data, the system (100)
comprising: a Quantum Clustering Algorithm (101) that partitions data records in different
clusters such that the data in each cluster can be indexed efficiently, a Compressed
Ternary Tree (111, 112, 113) that replaces all conceivable indices for each cluster
thereby solving the Unthinkable Query Problem (110) for each cluster, and a Virtual
Query Processor (120) that converts traditional data base queries to raw Compressed

Ternary Tree queries and appropriate filters (121, 122, 123).

. A method (200) for Partial Unstructured Information Processing, constituting storing,

indexing and retrieval of partially specified unstructured data, the method comprising: a
Quantum Clustering Algorithm (201) that partitions data records in different clusters
wherein each cluster is associated with a quantum key, wherein keys, represented by
semi-infinite ternary bit strings, that are added to a cluster (210, 220, 230) are attached
(212, 222, 232) to the quantum key (211, 221, 231) associated with the cluster and keys
that are removed from a cluster are detached (213, 223, 233) from the quantum key
associated with the cluster, wherein a new key to be inserted is matched (250) against
the quantum key of each existing cluster, wherein the best match is compared (251) to a
threshold (252) to determine if the match is sufficiently good, wherein the key to be
inserted is added (260) to the cluster with the best matching quantum key if the match is
sufficiently good, wherein a new cluster is created (270) followed by adding the key to be
inserted to the new cluster (240) if the best match is not sufficiently good and a
Compressed Ternary Tree that replaces all conceivable indices for each cluster wherein
each cluster is associated with a Compressed Ternary Tree (214, 224, 234, 244),
wherein the new key is inserted (280) in the Compressed Ternary Tree of the selected

cluster

The method according to claim 2, further comprising a Virtual Query Processor that

converts (290) traditional data base queries to raw Compressed Ternary Tree queries

(raw query) and appropriate filters, wherein a raw query consists of start, length, pattern

and negate, wherein the pattern of a raw query are either a ternary bit strings or a

general integer intervals converted (291) to intervals that can be represented using

power-of-2-completion, wherein proper set operations such as union and intersection are
18
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used to combine (292) results from partitioned queries to produce the result of the
original query, wherein intersection pruning (293) is used to increase the speed for

executing complex queries.
The method of claim 2, further comprising a basic, ordered, lazy or replicating CTTs.

The method according to claim 4 wherein the criteria for selecting which nodes to lock in
a replicating CTT is based on available metrics including depth, height, cost, density,

weight, and frequency.
The method according to claim 2, further comprising packed CTTs.

The method according to claim 6 wherein candidate selection in each packed CTT is

based on available metrics including depth, height, cost, density, weight, and frequency.
The method according to claim 2, further comprising compressed CTTs.

The method according to claim 9 wherein compression in a compressed CTT is achieved

by pointer compression, structure compression or template compression.

The method according to claim 2 further comprising lookup of a query key by looking up
the query key in the Compressed Ternary Tree of each cluster and computing the set

union of the results.

The method according to claim 3 comprising Virtual Query Processor queries consisting

of start, length, pattern and negate.

The method according to claim 11 wherein the pattern of a Virtual Query Processor query

is either a ternary bit string or an integer interval.

The method according to claim 12 wherein power-of-2-completion is used to partition

general integer intervals to intervals that can be represented by ternary bit strings.

The method according to claim 3 wherein proper set operations such as union and
intersection are used to combine results from partitioned queries to produce the result of

the original query.

The method according to claim 3 wherein intersection pruning is used to increase the

speed for executing complex queries.

A computer program loadable into a memory communicatively connected or coupled to at
least one data processor, comprising software for executing the method according any of

the method claims 2-15 when the program is run on the at least one data processor.
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17. A processor-readable medium, having a program recorded thereon, where the program is

to make at least one data processor execute the method according to of any of the

method claims 2-15 when the program is loaded into the at least one data processor.
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