
US 20220035880A1
IN

(19) United States
(12) Patent Application Publication (10) Pub . No .: US 2022/0035880 A1

Miller et al . (43) Pub . Date : Feb. 3 , 2022

Publication Classification (54) DETERMINING FEASIBLE ITINERARY
SOLUTIONS

(71) Applicant : Amgine Technologies (US) , Inc. ,
Dover , DE (US)

(72) Inventors : Naomi Liora Miller , New York City ,
NY (US) ; Harold Roy Miller , Toronto
(CA) ; Warren Stableford , Burlington
(CA)

(51) Int . Ci .
G06F 16/9535 (2006.01)
G06F 16/242 (2006.01)
G06Q 10/02 (2006.01)
GO6F 40/30 (2006.01)

(52) U.S. CI .
CPC GO6F 16/9535 (2019.01) ; G06F 40/30

(2020.01) ; G06Q 10/02 (2013.01) ; G06F
16/243 (2019.01)

(73) Assignee : Amgine Technologies (US) , Inc.

(21) Appl . No .: 17 / 502,625

(22) Filed : Oct. 15 , 2021

Related U.S. Application Data
(63) Continuation of application No. 16 / 275,133 , filed on

Feb. 13 , 2019 , which is a continuation of application
No. 15 / 595,795 , filed on May 15 , 2017 , now Pat . No.
10,210,270 , which is a continuation of application
No. 15 / 069,791 , filed on Mar. 14 , 2016 , now Pat . No.
9,659,099 , which is a continuation - in - part of appli
cation No. 13 / 419,989 , filed on Mar. 14 , 2012 , now
Pat . No. 9,286,629 .

(60) Provisional application No. 61 / 452,633 , filed on Mar.
14 , 2011 .

(57) ABSTRACT
A method for changing an itinerary based on a user change
request is disclosed . The method may commence with
receiving an itinerary request associated with one or more
passengers . The method may continue with receiving a user
itinerary change request associated with the itinerary net
work . The method may continue with generating an itinerary
object associated with the user itinerary change request . The
method may continue with modifying the itinerary network
based on the itinerary object . The method may continue with
processing the itinerary network using a topology of the
itinerary network to create a plurality of tuples , the plurality
of tuples including at least flight tuples and hotel tuples . The
method may continue with performing a content search for
the plurality of tuples for each of the one or more passengers .
The method may continue with generating feasible itinerary
solutions based on results of the content searches .

a

100
140

ITINERARY
SOLUTION

160

130 ITINERARY
REQUEST

120

NETWORK
(e.g. , INTERNET)

110

SYSTEM FOR
TRANSLATING A USER
REQUEST INTO AN

ITINERARY SOLUTION
800

DATABASE
150

100

140

ITINERARY SOLUTION 160

Patent Application Publication

130

ITINERARY REQUEST 120

NETWORK (e.g. , INTERNET) 110

Feb. 3 , 2022 Sheet 1 of 9

SYSTEM FOR TRANSLATING A USER REQUEST INTO AN ITINERARY SOLUTION 800

DATABASE 150

US 2022/0035880 A1

FIG . 1

Cooz

230

Patent Application Publication

User Interface

Itinerary -Request 120

Previous Itinerary Network Exists ?

YES

Change Management Module

220

250

NO

Feb. 3 , 2022 Sheet 2 of 9

Original Module
240

US 2022/0035880 A1

FIG . 2

300

Patent Application Publication

Scheduler 320

Itinerary Request 120

Itinerary Request 120

Itinerary Network 340

Itinerary Network 340

Create Itinerary Object

Parser

Pre - Schedule

Resource Independent Schedule

330

List of Tuples 370 Itineraries 380

310

350

360

390

Content Search and Cartesian Product

Feb. 3 , 2022 Sheet 3 of 9

Itinerary Solutions 395
User Interface 220

US 2022/0035880 A1

FIG . 3

Patent Application Publication Feb. 3 , 2022 Sheet 4 of 9 US 2022/0035880 A1

400

410 RECEIVE AN ITINERARY REQUEST ASSOCIATED WITH
ONE OR MORE PASSENGERS

420

PARSE THE ITINERARY REQUEST TO CREATE AN
ITINERARY NETWORK ASSOCIATED WITH THE

ITINERARY REQUEST , THE ITINERARY NETWORK
INCLUDING AT LEAST TWO OR MORE NODES AND
DEPENDENCIES BETWEEN TWO OR MORE NODES

430
CREATE A TOPOLOGY OF THE ITINERARY NETWORK ,
THE TOPOLOGY INCLUDING AT LEAST AN ORDERED

LIST OF THE TWO OR MORE NODES

PROCESS THE ITINERARY NETWORK USING THE
TOPOLOGY TO CREATE A PLURALITY OF TUPLES , THE
PLURALITY OF TUPLES INCLUDING AT LEAST FLIGHT

TUPLES AND HOTEL TUPLES
440

BASED ON THE ITINERARY REQUEST AND THE
DEPENDENCIES BETWEEN TWO OR MORE NODES ,

ANALYZE THE PLURALITY OF TUPLES
450

460 BASED ON THE ANALYSIS , DETERMINE FEASIBLE
ITINERARY SOLUTIONS

470
RANK THE FEASIBLE ITINERARY SOLUTIONS BASED ON

PASSENGER PREFERENCES

480

PRESENT AT LEAST ONE ITINERARY SOLUTION
SELECTED FROM THE FEASIBLE ITINERARY SOLUTIONS

BASED ON THE RANKING TO THE ONE OR MORE
PASSENGERS

FIG . 4

5003

Patent Application Publication

Remove implied Dependencies Or Sink Node

Create implied Dependencies

Initial Setup Of Adjacency Matrix

Set Entries Representing Dependency To 1
540

510

520

530

Feb. 3 , 2022 Sheet 5 of 9 US 2022/0035880 A1

FIG . 5

600

Patent Application Publication

Set Number Of Levels

Create And Initialize Level Matrix

First Pass Of Level Matrix

Second Pass Of Level Matrix

Add Sink Node

610

620

630

640

650

Feb. 3 , 2022 Sheet 6 of 9 US 2022/0035880 A1

FIG . 6

7003

Create Dictionary To Hold Node Index And Node Type

Find Level In Level Matrix Where " Event " Node Occurs

Patent Application Publication

710

720

Order Nodes Backward
From Event Level To No

Level 0

Event Node Found ?

Yes Forward Topology

Feb. 3 , 2022 Sheet 7 of 9

750

740

730

Order Nodes Forward From Event Level To Maximum Level

760

US 2022/0035880 A1

FIG . 7

Patent Application Publication Feb. 3 , 2022 Sheet 8 of 9 US 2022/0035880 A1

SYSTEM FOR TRANSLATING USER REQUESTS INTO
ITINERARY SOLUTIONS

800

Parser
820

Processor
810

7
Database

840
L Scheduler

830

FIG . 8

Patent Application Publication Feb. 3 , 2022 Sheet 9 of 9 US 2022/0035880 A1

900

902 910

922 PROCESSORS

INSTRUCTIONS

906

922 MAIN MEMORY

INSTRUCTIONS

908 904

BUS HARD DISK DRIVE 922 STATIC MEMORY 920

INSTRUCTIONS
MACHINE
READABLE
MEDIUM

922
912 INSTRUCTIONS

NETWORK
INTERFACE
DEVICE

FIG . 9

US 2022/0035880 A1 Feb. 3. 2022
1

DETERMINING FEASIBLE ITINERARY
SOLUTIONS

CROSS - REFERENCE TO RELATED
APPLICATIONS

a

[0001] This application is a Continuation of U.S. patent
application Ser . No. 16 / 275,133 filed Feb. 13 , 2019 , which
is a Continuation of U.S. patent application Ser . No. 15/595 ,
795 filed on May 15 , 2017 and issued on Feb. 19 , 2019 as
U.S. Pat . No. 10,210,270 , which is a Continuation of U.S.
patent application Ser . No. 15 / 069,791 filed on Mar. 14 ,
2016 and issued on May 23 , 2017 as U.S. Pat . No. 9,659 ,
099 , which is a Continuation - in - Part of U.S. patent appli
cation Ser . No. 13 / 419,989 filed on Mar. 14 , 2012 and issued
on Mar. 15 , 2016 as U.S. Pat . No. 9,286,629 , which claims
the priority benefit of U.S. Provisional Patent Application
No. 61 / 452,633 , filed on Mar. 14 , 2011. The disclosures of
all of the above applications are incorporated by reference
for all purposes .

TECHNICAL FIELD

[0002] The present disclosure relates to data processing
and , more specifically , to translating user requests into
itinerary solutions .

BACKGROUND

[0003] When searching for and booking flights and hotels ,
a travel consumer may utilize choice environments provided
by online travel agencies and websites . These choice envi
ronments can provide travel - related information and advice
on everything from destinations to hotels , related points of
interest , and pricing data for a vast array of goods and
services . However , a choice task of the travel consumer is
often encumbered by information abundance and by legacy
technology platforms that almost invariably complicate the
consumer choice problem .
[0004] Moreover , travel agents and online travel agencies
may need to sort through a plurality of records and manually
select various options when selecting and scheduling the
travel itinerary for the travel consumer . This process
becomes particularly difficult when multiple databases are
involved in developing complex itineraries , such as reserv
ing multiple flights , hotels , cars , and restaurants , and for
developing itineraries for groups of travel consumers . Fur
thermore , travel agents and online travel agencies may
charge travel consumers for making changes to their itiner
aries and these changes can take from hours to days to take
effect .
[0005] Additionally , a conventional travel reservation pro
cess does not typically involve taking into consideration
previous travel itineraries associated with the travel con
sumer . Thus , searching for and selecting a travel itinerary is
done without analysis of selections or preferences associated
with previous requests .

[0007] According to one example embodiment of the
disclosure , a system for translating user requests into itin
erary solutions is provided . The system may include a
processor , a parser in communication with the processor ,
and a scheduler in communication with the processor . The
processor may be operable to receive an itinerary request
associated with one or more passengers . Furthermore , the
processor may be operable to present at least one itinerary
solution to the one or more passengers . The at least one
itinerary solution may be selected from feasible itinerary
solutions based on ranking .
[0008] The parser may be operable to parse the itinerary
request to create an itinerary network associated with the
itinerary request . The itinerary network may include at least
two or more nodes and dependencies between two or more
nodes . The scheduler may be operable to create a topology
of the itinerary network . The topology may include at least
an ordered list of the two or more nodes . The scheduler may
be further operable to process the itinerary network using the
topology to create a plurality of tuples , where a single node
may correspond to a single tuple . The plurality of tuples may
include at least flight tuples and hotel tuples . The scheduler
may be operable to analyze the plurality of tuples based on
the itinerary request and the dependencies between two or
more nodes . Based on the analysis , the scheduler may
determine the feasible itinerary solutions . Furthermore , the
scheduler may be operable to rank the feasible itinerary
solutions based on at least passenger preferences .
[0009] According to another example embodiment of the
disclosure , a method for translating user requests into itin
erary solutions is provided . The method may commence
with receiving an itinerary request associated with one or
more passengers . The method may continue with parsing the
itinerary request to create an itinerary network associated
with the itinerary request . The itinerary network may include
at least two or more nodes and dependencies between two or
more nodes . Upon the parsing , a topology of the itinerary
network may be created . The topology may include at least
an ordered list of the two or more nodes . The method may
further include processing the itinerary network using the
topology to create a plurality of tuples , where a single node
may correspond to a single tuple . The plurality of tuples may
include at least flight tuples and hotel tuples . Furthermore ,
the plurality of tuples may be analyzed based on the itinerary
request and the dependencies between two or more nodes .
The method may continue with determining feasible itiner
ary solutions based on the analysis . The method may further
include ranking the feasible itinerary solutions based on
passenger preferences . Furthermore , the method may
include presenting at least one itinerary solution to the one
or more passengers . The at least one itinerary solution may
be selected from the feasible itinerary solutions based on the
ranking
[0010) Other example embodiments of the disclosure and
aspects will become apparent from the following description
taken in conjunction with the following drawings .

SUMMARY BRIEF DESCRIPTION OF THE DRAWINGS

[0006] This summary is provided to introduce a selection
of concepts in a simplified form that are further described
below in the Detailed Description . This summary is not
intended to identify key features or essential features of the
claimed subject matter , nor is it intended to be used as an aid
in determining the scope of the claimed subject matter .

[0011] Embodiments are illustrated by way of example
and not limitation in the figures of the accompanying
drawings , in which like references indicate similar elements .
[0012] FIG . 1 illustrates an environment within which
systems and methods for translating user requests into
itinerary solutions can be implemented .

US 2022/0035880 A1 Feb. 3. 2022
2

[0013] FIG . 2 is a flow diagram showing a process for
translating user requests into travel itineraries depending on
a previous itinerary network .
[0014] FIG . 3 is a block diagram showing a translation of
user requests into travel itineraries via a parser and a
scheduler .
[0015] FIG . 4 is a process flow diagram showing a method
for translating user requests into itinerary solutions .
[0016] FIG . 5 is block diagram illustrating a process for
building an adjacency matrix .
[0017] FIG . 6 is a block diagram illustrating a process for
building a level matrix .
[0018] FIG . 7 is a block diagram illustrating a process for
creating a topology .
[0019] FIG . 8 is a block diagram showing various modules
of a system for translating user requests into itinerary
solutions .
[0020] FIG . 9 shows a diagrammatic representation of a
computing device for a machine in the exemplary electronic
form of a computer system , within which a set of instruc
tions for causing the machine to perform any one or more of
the methodologies discussed herein can be executed .

itinerary network by selecting main nodes and child nodes
that depend on the main nodes . Furthermore , the scheduler
may use the pre - schedule algorithm to create a level matrix
of the itinerary network . Based on the level matrix , a
topology of the itinerary network may be created . In the
topology , the nodes are organized in a form of an ordered
list .
[0024] Using the pre - schedule algorithm a level matrix of
nodes and a topology of nodes are created . Based on the
topology , the parser can analyze the itinerary network to
create tuples associated with the itinerary request . For
example , flight tuples and hotel tuples can be created . As
used herein , a tuple is a set of objects associated with a node .
In an example embodiment , in a topology , a single node may
correspond to a single tuple . The parsers use a resource
independent scheduling process , also referred to as
resource independent schedule algorithm , to process through
the topology one node at a time to create a flight tuple and / or
a hotel tuple for a given flight node and / or hotel node . Tuples
may not be assigned to city nodes .
[0025] Each flight tuple and / or hotel tuple provides date
intervals and time intervals to be used in a content search for
an itinerary solution (i.e. , a flight solution or a hotel solution)
for the flight node or the hotel node . In the case of flight
tuples , date intervals and / or time intervals may include
widebucket intervals . In the case of hotel tuples , date
intervals and / or time intervals may include check - in dates ,
check - in times , checkout dates and check - out times . Flight
tuples have an additional optimal bucket interval used for
content search and for ranking solutions at a later stage .

a

a

DETAILED DESCRIPTION

>

Partition

[0021] The following detailed description includes refer
ences to the accompanying drawings , which form a part of
the detailed description . The drawings show illustrations in
accordance with exemplary embodiments . These exemplary
embodiments , which are also referred to herein as
“ examples , ” are described in enough detail to enable those
skilled in the art to practice the present subject matter . The
embodiments can be combined , other embodiments can be
utilized , or structural , logical , and electrical changes can be
made without departing from the scope of what is claimed .
The following detailed description is , therefore , not to be
taken in a limiting sense , and the scope is defined by the
appended claims and their equivalents .
[0022] The disclosure relates to systems and methods for
translating user requests into itinerary solutions . More spe
cifically , upon receiving a user request , such as an itinerary
request associated with one or more passengers , the itinerary
request is forwarded to a parser . The parser may be respon
sible for parsing the itinerary request to determine nodes
associated with the itinerary request and dependencies
between the nodes . The node may represent an attribute
associated with the itinerary request , such as a city , a flight ,
a hotel , a date , time , and so forth . The nodes may be
combined into an itinerary network .

[0026] The flight tuples and hotel tuples may then be
separated into groups based on the passenger . A partition
subset may be determined based on a relation or a property
of interest associated with flight tuples . For each passenger ,
one or more partitions of the flight tuples associated with
that passenger may be created .
[0027] For each passenger , a single partition of the set of
flight tuples into one or more disjoint groups is created ,
based on a relation or property of interest . The groups are
called partition subsets .

Content Search

End - to - End Process Overview

[0023] Based on the itinerary request , an itinerary object
associated with the itinerary request may be created . The
itinerary object , also referred to as an itinerary network
object , is a set of data that contains at least one of the
following : an itinerary request , an itinerary network created
by the parser , structures created by the scheduler (such as an
adjacency matrix , a level matrix , and a topology) , lists of
partitions , itinerary solutions , a passengers list , function
calls , and other related items , such as a conversation mes
sage and the like . The itinerary network object may be
passed to a pre - scheduling process , also referred herein to as
a pre - schedule algorithm . Upon creation of the itinerary
network , a scheduler may create a level matrix for the

[0028] For each passenger , the following steps may be
performed . The content search may be performed based on
each hotel tuple , obeying the check - in and checkout dates
and times specified in the hotel tuple . The itinerary solutions
found based on the content search may be stored in a tuple
solution bucket . Then , the content search may be performed
separately on each partition subset of the single partition for
the passenger . If the subset contains one flight , itinerary
solutions for a one - way flight may be returned . If there are
two flights in the subset , a priced combination of two flights
may be returned . The widebucket date and time intervals
from the flight tuples may be obeyed in each search . The
solutions may be stored in a partition subset solution bucket .
[0029] In parallel , the content search can be performed
across all partition subsets for all passengers . For each
partition subset , the flight and hotel attributes for the content
search may be provided by the tuple time buckets . A set of
flight solutions and hotel solutions in compliance with
restrictions associated with the itinerary request , such as

US 2022/0035880 A1 Feb. 3. 2022
3

time restrictions , may be returned and stored for each of the
partition subsets . If the only restriction is time , the buckets
within the solution fall . A vital aspect of the scheduling is
that after the ranking , the scheduling provides the best fitted
itinerary solutions for the restrictions placed on the itinerary
request . It can be difficult to find results if each time the
content search is made and only results that exactly match
the restrictions are found . Multi - objective ranking is the
mechanism by which providing of the best fitted itinerary
solutions is achieved .

Ranking
[0030] Ranking of the flight solutions and hotel solutions
is performed based on the results of the content search
before the flight solutions and hotel solutions are returned to
the passenger . Each flight solution and hotel solution is
scored against multiple user preferences .

Cartesian Product

intranet , a Personal Area Network , a Local Area Network
(LAN) , a Wide Area Network (WAN) , a Metropolitan Area
Network , a virtual private network , a storage area network ,
a frame relay connection , an Advanced Intelligent Network
connection , a synchronous optical network connection , a
digital T1 , T3 , E1 or E3 line , Digital Data Service connec
tion , Digital Subscriber Line connection , an Ethernet con
nection , an Integrated Services Digital Network line , a
dial - up port such as a V.90 , V.34 or V.34bis analog modem
connection , a cable modem , an Asynchronous Transfer
Mode connection , or an Fiber Distributed Data Interface or
Copper Distributed Data Interface connection . Furthermore ,
communications may also include links to any of a variety
of wireless networks , including Wireless Application Pro
tocol , General Packet Radio Service , Global System for
Mobile Communication , Code Division Multiple Access or
Time Division Multiple Access , cellular phone networks ,
Global Positioning System , cellular digital packet data ,
Research in Motion , Limited duplex paging network , Blu
etooth radio , or an IEEE 802.11 - based radio frequency
network . The network 110 can further include or interface
with any one or more of an RS - 232 serial connection , an
IEEE - 1394 (Firewire) connection , a Fiber Channel connec
tion , an IrDA (infrared) port , a SCSI (Small Computer
Systems Interface) connection , a Universal Serial Bus
(USB) connection or other wired or wireless , digital or
analog interface or connection , mesh or Digi® networking .
The network 110 may be a network of data processing nodes
that are interconnected for the purpose of data communica
tion . The network 110 may include any suitable number and
type of devices (e.g. , routers and switches) for forwarding
commands , content , and / or web object requests from each
client to the online community application and responses
back to the clients .

[0036] The user device 140 may include a mobile tele
phone , a personal computer (PC) , a laptop , a smart phone , a
tablet PC , and so forth . The system 800 may be a server
based distributed application , thus it may include a central
component residing on a server and one or more client
applications residing on one or more user devices and
communicating with the central component via the network
110. The passengers 130 may communicate with the system
800 via a client application available through the user device
140 .

[0031] For each passenger , the Cartesian product algo
rithm may create feasible itinerary solutions by combining
solutions from the partition subsets and individual hotel
tuples correctly into one set . These combined solutions may
be ranked .
[0032] A solution space for the itinerary is formed by
taking the Cartesian product of the sets of solutions for each
of the partition subsets . Infeasible combinations of solutions
may be removed from a solution list . Furthermore , solutions
from the partition subsets and individual hotel tuples can be
combined into one set of feasible itinerary solutions and
stored in the solution list in the partition for each passenger .
The solutions can be ranked and a predetermined number of
top solutions can be returned and provided to the passengers
via a user interface . It another example embodiment , more
than one passenger may be combined into a partition subset .
[0033] If same flight dependencies and hotel dependencies
exist for different passengers , an itinerary wide Cartesian
product algorithm may be performed . Itinerary wide Carte
sian product algorithm may combine itinerary solutions
from each passenger and rank the itinerary solutions obeying
same flight dependencies hotel dependencies , if any exist .
The highest ranked itinerary solution may be returned .
[0034] Referring to the drawings , FIG . 1 illustrates an
environment 100 within which the systems and methods for
translating user requests into itinerary solutions can be
implemented , in accordance with some embodiments . An
itinerary request 120 associated with one or more passengers
130 may be received , for example , via a user interface
displayed on a user device 140. In particular , the user device
140 , in some example embodiments , may include a Graphi
cal User Interface (GUI) for displaying the user interface
associated with a system 800 for translating user requests
into itinerary solutions . In a typical GUI , instead of offering
only text menus or requiring typed commands , the system
800 may present graphical icons , visual indicators , or special
graphical elements called widgets that may be utilized to
allow the passengers 130 to interact with the system 800 .
[0035] The itinerary request 120 may be transmitted to the
system 800 for translating user requests into itinerary solu
tions via a network 110. The network 110 may include the
Internet or any other network capable of communicating
data between devices . Suitable networks may include or
interface with any one or more of , for instance , a local

a

[0037] The itinerary request 120 may be analyzed based
on travel itineraries available from the optional database 150
with reference to preferences of the passengers 130. An
itinerary solution 160 suiting the itinerary request 120 and
preferences of the passengers 130 may be determined . The
itinerary solution 160 may be presented to the passengers
130 by displaying the itinerary solution 160 via the user
interface on a screen of the user device 140 .

[0038] FIG . 2 is a flow diagram 200 showing an overall
process for translating user requests into travel itineraries
depending on a previous itinerary network . More specifi
cally , an itinerary request 120 associated with one or more
passengers may be received via a user interface 220. The
itinerary request 120 may be processed by an original
module 240 or by a change management module 250
depending on whether one or more previous itinerary net
works exist for these passengers , as determined at block 230 .
In an example embodiment , differences between existing
itinerary networks and new itinerary networks (if no existing

US 2022/0035880 A1 Feb. 3. 2022
4

list may contain at least two or more nodes . Each of the
nodes represents an attribute , such as a city , a flight , a hotel ,
and so forth . The dependency list may contain dependencies
between two or more nodes , in particular , a directed relation
between two nodes , such as a level dependency . In an
example embodiment , the node may have additional infor
mation concerning an itinerary object that the node repre
sents , such as a passenger or a group of passengers and
attributes requested according to the itinerary request , for
example , a date , an airline , a hotel brand , and so forth .
[0043] The scheduler receives the itinerary network cre
ated by the parser . The scheduler is responsible for building
of a set of itinerary solutions (e.g. , flights , hotels , and so
forth) , taking into account the structure of the itinerary
network , individual passenger profiles , and the availability
in content . In particular , the scheduler performs pre - sched
uling of the itinerary network , resource independent sched
uling of the itinerary network , a content search , and applying
a Cartesian product to results of the content search on the
partition subsets .

A Pre - Scheduling Process of the Scheduler .
[0044] A pre - scheduling process includes creating an adja
cency matrix , a level matrix , and a topology .

itinerary networks are found) may be resolved by perform
ing an intelligent ranking process .
[0039] FIG . 3 is a schematic block diagram 300 showing
translating user requests into travel itineraries by the original
module within the environment described with reference to
FIG . 1 , according to example embodiments . The translation
of user requests into travel itineraries is performed by a
processor (not shown) , a parser 310 , a scheduler 320 , and a
user interface 220. When the processor receives an itinerary
request 120 from one or more passengers , an itinerary object
may be created at block 330. The itinerary object is a set of
data that contains at least the following data : the itinerary
request 120 , an itinerary network 340 created by the parser
310 , structures created by the scheduler 320 (such as an
adjacency matrix , a level matrix , and a topology) , lists of
partitions , itinerary solutions , a passengers list , function
calls , and other related items , such as a conversation mes
sage and the like . The itinerary object may contain all the
information needed for the scheduler 320 and solutions
which the scheduler 320 generates . In an example embodi
ment , a file Itinerary.es’may be created to store the itinerary
object . Additionally , in relation to command and control , the
itinerary object may allow communication between the
parser 310 and the scheduler 320 .
[0040] When the itinerary object is created , the itinerary
request 120 and the itinerary object may be forwarded to the
parser 310. The parser 310 may create an itinerary network
340 and forward the itinerary network 340 to the scheduler
320. The scheduler 320 analyzes the itinerary network 340 ,
individual passenger profiles , and availability of content .
The main processes of the scheduler 320 are pre - scheduled
at block 350 , followed by forwarding the itinerary network
340 to block 360 for resource - independent scheduling of the
itinerary network 340. Upon the resource - independent
scheduling , a list 370 of tuples and itineraries 380 are
provided to block 390. The tuples may be separated into
groups based on the passenger . A partition subset may be
determined based on a relation or a property of interest
associated with the tuples . For each passenger , one or more
partitions of the flight tuples associated with that passenger
may be created . A content search may be performed over the
partition subset and a Cartesian product may be applied to
results of the content search on the partition subsets . Itin
erary solutions 395 feasible for the itinerary request 120 may
be forwarded to the user interface 220. Steps performed by
the parser 310 and the scheduler 320 are described in more
detail below with reference to FIGS . 4-7 .
[0041] FIG . 4 is a detailed process flow diagram showing
a method 400 for translating user requests into travel itin
eraries , according to example embodiments . The method
400 may commence with receiving an itinerary request at
operation 410. In an example embodiment , the itinerary
request may be provided via at least one of the following : a
natural language , a typed text , a selection of preexisting
options , and so forth . In a further example embodiment , the
itinerary request may be associated with one passenger or a
group of passengers . Furthermore , based on the receipt of
the itinerary request , an itinerary object associated with the
itinerary request may be created .
[0042] At step 420 , upon receipt of the itinerary request ,
the parser performs parsing of the itinerary request to create
an itinerary network associated with the itinerary request . In
an example embodiment , the itinerary network includes a
node list , a passenger list , and a dependency list . The node

a

Adjacency Matrix .
[0045] Still referring to FIG . 4 , the method 400 may
optionally include creating an adjacency matrix of the
itinerary network based on the classification of the nodes
into main nodes and child nodes . The adjacency matrix is an
(nxn) matrix , where n is the number of nodes in the network .
Each (i , j) entry has a value of (1) if there is a directed
dependency between node i and node j in the network ,
otherwise , each (i , j) entry has value of (-1) or (0) .
[0046] FIG . 5 is a block diagram 500 illustrating a process
of building the adjacency matrix . More specifically , at block
510 , any implied dependency provided by the parser or a
sink node can be removed . At block 520 , implied depen
dencies between the nodes may be created . More specifi
cally , the scheduler may classify each of the nodes into a
main node and a child node based on the dependencies
between the nodes . The child node is dependent on the main
node . Therefore , an implied dependency between a main
node and its child node can be created . For example , an
implied dependency between a city node being the main
node and a hotel node being a child node may be created .
The implied dependency may be also created between a
flight node which is a main node and a hotel node which is
a child node of a destination city . At block 530 , an initial
setup of the adjacency matrix can be performed . In particu
lar , dimensions (n + 2xn + 2) can be set , where n is a number
of nodes in the itinerary network . The adjacency matrix can
be created and all entries initially set to (-1) . At block 540 ,
entries that represent dependencies output by the parser and
implied dependencies are set to (1) .

a
a

a

a

Level Matrix .

[0047] Referring again to FIG . 4 , the method 400 may
optionally include organizing the nodes into levels to create
a level matrix of the itinerary network . In other words , the
level matrix , also referred to as a directed acyclic graph
matrix , can organize nodes into levels . In an example
embodiment , ‘ Level O ' of the level matrix includes node A

US 2022/0035880 A1 Feb. 3. 2022
5

-continued
level3 ++

end .

and node B , “ Level 1’includes node C , node D , and node E ,
and ‘ Level 2 ’ includes node F. The nodes in each level have
dependent nodes at the previous level . The nodes in ‘ Level
O’have no dependencies . The nodes at ' Level 1 ’ have one or
more dependent nodes at ‘ Level O ’ . The nodes at ' Level 2
have one or more dependent nodes at ‘ Level 1 ' , and so forth .
[0048] FIG . 6 is a block diagram 600 illustrating a process
of building a level matrix . More specifically , at block 610 ,
a number of levels can be set . In particular , dimensions
(n + 1xn + 1) can be set , where n is number of nodes in the
network . The row index may represent the level , the column
index may represent the order in which the node was put in .
For example , an entry in (i , j) is the index of the node placed
in level i in jih place . At block 620 , the level matrix may be
created and initialized . All entries may be initially set to
(-1) . At block 630 , a first pass of the level matrix may be
performed . For this purpose , first , all nodes with no depen
dencies may be found and placed in level 0. Second , all
nodes with dependencies at level O may be found and placed
in level 1. Successive level nodes may be created until a
maximum level is reached . At block 640 , a second pass of
the level matrix may be performed . In particular , the sched
uler may go back through the level matrix and remove
duplicate nodes . The nodes in the level matrix may be
ordered such that the nodes only appear once and at the latest
stage or highest level . Since the level matrix is used for
recusing through the nodes , level matrix may ensure that ,
when performing a forward pass , all dependent nodes for a
specific node have already been scheduled , or in the case of
the creating of the topology the ordering of the topology also
may ensure this condition . At block 650 , a sink node may be
added .

[0051] If the event node is not found at the decision block
730 , an event topology may be created . The scheduler may
start at level at which the event node is found and add all
nodes at that level . Then , for each node at that level , the
scheduler may find dependent nodes in the previous level ,
and add those dependent nodes to the topology . This process
is continued backwards through the levels until level 0 .
Afterwards , the scheduler performs a pass of the forward
topology from the first level after the event level . As shown
on FIG . 7 , at block 750 , nodes may be ordered backward
from the event level to level 0. At block 760 , the nodes may
be ordered forward from the event level to the maximum
level .

Resource Independent Scheduling Process .
[0052] Referring again to FIG . 4 , the method 400 may
further include processing the itinerary network by the
scheduler using the topology to create a plurality of tuples at
operation 440. In particular , in an example embodiment , the
resource independent scheduling process , or a resource
independent schedule algorithm , for each flight node , deter
mines departure and arrival date and time windows , as a
function of the itinerary request and the dependencies
between two or more nodes in the itinerary network . The
departure and arrival date and time windows are used for the
content search and ranking of results of the content search .
The resource independent scheduling process is also used to
also determine check - in and check - out dates for each hotel
node in the itinerary network .
[0053] The following example program code can be used
to determine check - in and check - out dates :

Topology
[0049] Still referring to FIG . 4 , the method 400 may
further include operation 430 , in which the scheduler may
create a topology of the itinerary network . The level matrix
provides the basis on which the topology of the itinerary
network may be built . The topology is an ordered list of two
or more nodes to be scheduled . FIG . 7 is a block diagram
700 illustrating a process for creating the topology . As
shown on FIG . 7 , at block 710 , a dictionary may be created
to hold a node index and a node type . At block 720 , a level
in a level matrix where an event node occurs may be found .
If the event node is found at a decision block 730 , a forward
topology may be created at block 740. In the forward
topology , the scheduler may start at level 0 of the level
matrix and add the nodes to the topology in the order the
nodes occur . This process continues for levels 1 through the
maximum level of the level matrix .
[0050] In an example embodiment , if level3 denotes the
level in the level matrix being considered , k denotes the
number of nodes reached at level3 , and level3 is set to 0 , the
following example program code can be used to create the
forward topology :

ForEach (node n in the topology) {
If (n is a flight node) {

Set WideBucket Departure and Arrival Windows
Set OptimalBucket Departure and Arrival Windows

}
If (n is a hotel node) {

Set check - in and check - out dates for the hotel
}
If (n is a city node) {
Do Nothing

a

2

[0054] The method 400 may further include analyzing the
plurality of tuples by the scheduler based on the itinerary
request and dependencies between two or more nodes at
operation 450. In particular , the resource independent sched
uling process may include determining widebucket depar
ture windows , widebucket arrival windows , and optimal
bucket windows .

while (level3 < maxlevels) do
Set k = 0

while (k < levelMatrix.length) do
Search for next node in level3

If found add it to topology
k ++
end

WideBucket Departure Window .
[0055] A WideBucket departure window may be used for
determining departure windows for the content search .
When the resource independent schedule algorithm hits a
flight node , the resource independent schedule algorithm
may looks for all dependent flight nodes of the flight node
in the itinerary network . The dependent nodes may include
previous flights of the passenger , or flights from other

US 2022/0035880 A1 Feb. 3. 2022
6

=

passenger's itineraries which impact this passenger , for
example if they these passengers fly together . The resource
independent schedule algorithm then sets the departure
window based on the requested date and time and the
dependent flights . The resource independent schedule algo
rithm for determining the widebucket departure window is
described in detail below .

[0056] Let F ; be a flight node . The departure window for
F ; is [X31 , xa] and the arrival window is [dç? , da] . r ; is a
requested date and t ; is requested time .
[0057] In the first step , the start and end of departure
window are initialized to the current date and time (D) . [Xst
Xf] = [D , D) . In the second step , all dependent flight nodes for
this flight node are found in the itinerary network . The
example program code for these steps may be as follows :

foreach (FlightTuple t in Deps) do
Let start , and end , denote the start and end of widebucket arrival
window , respectively

if (start , > start) then
start = start ,

end
if (end , < finish AND end , > start) then

finish end ,
end

end
foreach (HotelTuple t in Deps) do

if (t.checkout date > start) then
start = t.checkout date

end
if (t.checkout date < finish AND t.checkout date > start) then

finish t.checkout date
end

end

st ?

[0061] If the requested date (r ;) falls significantly outside
the interval (start , finish) , the scheduler may build the
departure window on r ;. Otherwise , [X5Xf] is equal to
(start + mct , finish + mct + Delta) .

st

WideBucket Arrival Window .

foreach (node in nDependencies) do
switch (Node Type of node) do

case Flight
(find a flight tuple corresponding to the node in a list and add
to Deps if not there already)

case City
(find a flight tuple corresponding to a previous flight and add
to Deps if not there already)

;
case Hotel

(find a hotel tuple corresponding to the node in a list and add
to hotel Deps if not there already)

;
endsw

end

[0062] The shortest and longest flying times are deter
mined for the flight $ F_ { i } $. The shortest and longest flying
time may be $ fly_ { s } $, and the longest flying time may be
$ fly_ { 1 } $. Thereafter , the time zone difference , cliff , is
determined . The time zone difference is an integer number
(e.g. , number of minutes) depending on regions of departure
and arrival airports . Based on the combining , the arrival
window may be ($ x_ { st } $ + $ fly_ { s } $ + diff , $ x_ { fi } $ + $ fly_
{ 1 } $ + diff) . [0058] In the third step , if the set of dependent flights is

null , then go to step 4. Else go to step 5. In the fourth step ,
departure window is set based on requested date and time .
The example program code of the coded algorithm is given
below :

OptimalBucket Window .

=

if (Deps = null) then
if (requested date (r ;) or requested time (ti) ! = = null) then

if (requested date (r ;) > Today) then
[XsvXg] = (12 am r ;, 11:59 pm r ; + Delta)

end
if (requested date (r ;) = Today) then
[XsXg] = (Now + mct , Now + mct + Delta)
end

end
end

=

[0063] The optimal flight departure window or the optimal
flight arrival window (or both) is essentially a narrower time
window for when the passenger wants to fly , based on dates
and times requested in the itinerary request . Flights found in
larger window may be ranked based on whether a flight fits
into this narrower window . This process is similar to cre
ation of the flight windows created earlier , with the follow
ing difference : if a flight cannot be found in a preferred
window , reasonable flights falling outside the optimal win
dow still can be obtain . In conventional methods , these
reasonable flights are missed and an empty solution is
provided .
[0064] The wide departure window may be determined as
d_ { st } $, $ wd_ { fi } $] , the wide arrival window may be

determined as [$ wa_ { st } $, $ wa_ { fi } $] , the narrow departure
window may be determined as [$ nd_ { st } $, $ nd_ { fi } $] , and
the narrow arrival window may be determined as [$ na_
{ st } $, $ na_ { fi } $] .
[0065] The algorithm for determining the optimalbucket
windows may include obtaining wider flight windows (de
parture and arrival) :

Set [$ nd_ { st } $, $ nd_ { fi } $] $ = $ [$ wd_ { st } $, $ wd_ { fi } $]
initially .

[0059] In the fifth step , the widebucket departure window
may be set based on requested date and time , if any . The
example program code of the coded algorithm is given
below :

= if (requested date (r ;) ! = null) then
(start , finish) = (r ; at 12 am , r ; + Delta at 11:59 pm)

end

[0060] Start and finish variables are updated based on
arrival windows of dependent flights . Basically , start is set to
be maximum start and finish is set to be minimum finish of
all arrival windows (where finish > start) . The example pro
gram code of the coded algorithm is given below :

[0066] The wider flight windows may be switched based
on a type of the itinerary request . Intervals may be handled
by going through departure before xl and departure after x2
separately . Similar steps are performed for arrival intervals :

US 2022/0035880 A1 Feb. 3. 2022
7

more , the number of flight nodes may be counted . In an
example embodiments , the following program code may be
used for this purpose : *

=

st st

[0067] (a) Depart on x
[0068] check that nd ,, < x < ndi
[0069] (ndst , ndf) = [nds? , x]

[0070] (b) Depart Before x
[0071] check that nd ,, < x < nda
[0072] (ndse , nda) [nder , x]

[0073] (c) Depart after x
[0074] check that nd ,, < nda
[0075] (ndst , ndf) = [nds , x]

[0076] (d) Arrive on x
[0077] check that nast < x < nafi
[0078] (naze , naj) = [nas x]

[0079] (e) Arrive Before x
[0080] check that nagt < x < nafi
[0081] (nac , na) [na , x] x

[0082] (f) Arrive after x
[0083] check that nagt < x < nafi
[0084] (nas , naf) = [x , naj]

for (inti = 0 ; i < Count ; i ++) do
for (int j = 0 ; j < Count ; j ++) do
if (i < j) then

if (Fi.origin city – Fj.destination city) then
if there is a set in PartitionSubsets containing Fi or Fj
(but not both)
then add Fi or Fj to this set
if no such set then create a new set , add Fi and Fj to
the new set .
Add set to PartitionSubsets
end

end
end

end
st

Partition Algorithm .
[0085] The following program code may be used for
initiating the partition algorithm , Cartesian product algo
rithm , and content search :

[0090] For any flight nodes not added to a set , single flight
sets may be created and added to PartitionSubsets .
[0091] The partition algorithm may produce the same
result as creating a graph whose nodes are trips Ti and with
edges between two trips if origin city of one trip is equal to
destination city of another trip . The new set to be partitioned
may consist of disjoint connected components of the graph ,
which are the PartitionSubsets in the partition algorithm
described above . foreach (Passenger) do

Partition Algorithm
end
Content Search

Ranking Partition Subset Solutions
foreach (Passenger) do

Cartesian Product Algorithm
end

Example Partition Algorithm 2 .
[0092] Execution of the partition algorithm may include
finding all pairs of trips where origin of the first trip is the
same as destination of the second trip . Furthermore , all
disjoint combinations of pairs of trips may be found . The
leftover trips not in pairs may be added . Thereby , one or
more modified sets may be obtained , where pairs of trips are
treated as a single element . Furthermore , all partitions for
each modified set may be found . Finally , edge cases may be
added .

[0086] The partition algorithm , Cartesian product algo
rithm , and ranking are described in more detail below .
[0087] The partition refers to groupings of flight tuples .
More specifically , the method 400 can include selecting a
partition of the flight tuples for each passenger . Hotel tuples
are not part of the partition . There is a possibility to perform
more than one partition . Input data for a partition algorithm
may include a level matrix . Output data of the partition
algorithm is a combination of partitions of flight tuples
and / or individual flight tuples . Let Ti is a trip , such as a trip
by plane , train , and so forth . Using a depth - first search
(DFS) algorithm to find cycles may miss combinations of
the form (YYZ - LHR , CDG - YYZ) and (LHR - CDG) corre
sponding to (T1 , T3) and (T2) . This may be caused by the
fact that DFS follows the path and includes LHR - CDG in the
path when creating the cycle . Therefore , the DFS algorithm
may produce YYZ - LHR - CDG - YYZ - > (T1 , T2 , T3) .
[0088] In example embodiments , other ways of finding
potential return combinations of partitions of flight tuples
that are not path dependent may be used .

Cartesian Product Algorithm .
[0093] The Cartesian product algorithm , also referred
herein to as a Heuristic algorithm , may combine solutions
across the partition subsets and hotel solutions to form a
complete flight (and hotel) solution for the passenger . The
Cartesian product algorithm may include taking a cross
product of solutions across the partition subset solution
buckets for flights (AxBxC) . Furthermore , each solution
obtained may be checked for correctness (e.g. , one flight
does not depart before a previous dependent flight arrives) .
These operations are illustrated in FIG . 4 , namely the
method 400 may include determining feasible itinerary
solutions by the scheduler based on the analysis at operation
460. The feasible solutions may be stored in a partition
solution bucket . The Cartesian product algorithm may fur
ther include taking a cross product of full solutions with a
list of hotel solutions to combine flights and hotels correctly .
[0094] As shown in FIG . 4 , at operation 470 , the feasible
itinerary solutions may be ranked based on passenger pref
erences . In an example embodiment , the passenger prefer
ences are determined based on the itinerary request or a
preexisting selection . More specifically , upon execution of
the Cartesian product algorithm , the ranking is applied to
feasible solutions provided by Cartesian product algorithm .
A predetermined number of the top itinerary solutions may

Example Partition Algorithm 1 .
[0089] Two flight nodes Fi and Fj may be related as
follows : Fi origin city = Fj destination city . This relation may
be not an equivalence relation since the relation is not
symmetric . However , the relation can partition the main set
into meaningful subsets based on potential cycles . The input
data for the partition algorithm may include a list of flight
nodes . The output data may include a list of subsets of flight
nodes . During execution of the partition algorithm , a list of
subsets may be defined and called PartitionSubsets . Further

a

US 2022/0035880 A1 Feb. 3. 2022
8

be selected . If identical dependencies associated with each
of the passengers are identified , such as the same flight and
hotel dependencies among the passengers , an itinerary wide
Cartesian product algorithm may be initiated across the
partition solutions and the feasible solutions may be ranked
based on the identical dependencies . In some example
embodiments , a conventional ranking procedure may be
performed . At operation 480 , at least one itinerary solution
selected from the feasible itinerary solutions based on the
ranking may be presented to the one or more passengers .

new

*

performed by the change management module may include
running the resource independent scheduling to create time
windows for flights and hotels in a new itinerary network (as
in the process performed by the original module) . The
process may further include running a partition algorithm to
create a partition for the new network P , The process may
continue with running a content search to fill itinerary
solution buckets for partition subsets of Pnew . The content
search may be unrestricted by the booked old itinerary
solution at this stage . The process may further include
running a Cartesian product algorithm to obtain feasible
itinerary solutions for the new itinerary network . Based on
the feasible itinerary solutions , the preexisting itinerary
network may be updated for further use during processing of
further itinerary requests .
[0103] The following code can be used to perform these
operations :

foreach (Solution in Cartesian Product) do
foreach (Flight in solution.Flights) do

If a flight exists in Booked Solution , then add one to
Change ManagementRank field of the solution
Else Do Nothing

end
end

a

Change Management Module .
[0095] Changes to an existing itinerary network can take
almost any direction : from changes to the resultant itinerary
network to date and time change , adding companions to the
itinerary or removing companions of the itineraries .
[009] Change management of the itinerary network is
handled by the change management module using the fol
lowing steps .
[0097] First , a new itinerary network may be generated by
the parser . This new itinerary network may be typically
created by making changes to an existing itinerary network .
[0098] Second , the scheduler may generate a new Carte
sian product solution by going through the steps of pre
scheduling , resource independent scheduling , partitioning ,
content searches and Cartesian product , as may be suitable
for the new itinerary network . The Cartesian product may be
performed on the new itinerary network independently from
the existing itinerary network or sets of itinerary solutions
associated with the existing itinerary network .
[0099] Third , previously booked flights and hotels , if it is
deemed suitable to retain the flights and hotels , may be given
additional scores where flights and hotels form part of the
new Cartesian product solution for the new itinerary net
work . In this manner , they the flights and hotels may
naturally be a part of a solution space of the new itinerary
network . In an example embodiment , inclusion of previ
ously booked flights and hotels may be congruent , in other
example embodiments , inclusion of previously booked
flights and hotels may be not congruent .
[0100] As a result of selection of a member of the Carte
sian product as the itinerary solution , one or more of the
following functions may occur : (a) new partitions may be
created ; (b) some old partitions may be retained ; and (c) old
partitions may be deleted (i.e. , cancelled) .
[0101] The overall process performed by the change man
agement module is similar to the process performed by the
original module . The operations are performed by the parser
and the scheduler (pre - scheduling , resource independent
scheduling , and content search) . The operation of the change
management module is described with reference to one
passenger , however , a plurality of passengers also may
analyzed by the change management module .
[0102] The parser may receive an itinerary request from a
passenger and identify a preexisting itinerary network asso
ciated with the passenger . The preexisting itinerary network
may be associated with one or more previous itinerary
requests associated with the passenger . The input data for the
change management module may include a previous itiner
ary that may include a partition Pold associated with the
previous itinerary and a booked solution (denoted as
bookedSolutions) . The input data may further include an
itinerary object associated with a new itinerary request
received by the change management module . The process

[0104] In example embodiment , the ranking may be com
bined with conventional ranking operations . Different types
of ranking may have an equal weight or a predetermined
weight in a combined ranking . Finally , the solutions may be
scored and ranked based on the score .
[0105] FIG . 8 is a block diagram showing various modules
of the system 800 for translating user requests into itinerary
solutions , in accordance with certain embodiments . The
system 800 may include processor 810 , a parser 820 , a
scheduler 830 , and an optional database 840. The processor
810 may include a programmable processor , such as a
microcontroller , central processing unit (CPU) , and so forth .
In other embodiments , the processor 810 may include an application - specific integrated circuit or programmable
logic array , such as a field programmable gate array
designed to implement the functions performed by the
system 800 .
[0106] The processor 810 may be operable to receive an
itinerary request associated with one or more passengers .
The parser 820 , being in communication with the processor
810 , may be operable to parse the itinerary request to create
an itinerary network associated with the itinerary request .
The itinerary network may include at least two or more
nodes and dependencies between two or more nodes . The
two or more nodes may be selected from a group compris
ing : an origin city , a destination city , a hotel , a date , a time ,
an airline , a connection between flights , and so forth .
[0107] In example embodiments , the scheduler 830 , being
in communication with the processor 810 and the parser 820 ,
may be further operable to organize the two or more nodes
into levels based on the dependencies between two or more
nodes to create a level matrix of the itinerary network .
Therefore , the dependencies between two or more nodes
may include at least level dependencies . The scheduler 830
may also create a topology of the itinerary network that may
include at least an ordered list of the two or more nodes . The
topology of the itinerary network may be created based on
the level matrix . In further example embodiments , the

be

US 2022/0035880 A1 Feb. 3. 2022
9

a

a

scheduler 830 may be operable to classify each of the nodes
into a main node and a child node based on the dependencies
between the nodes . The child node may be dependent on the
main node .
[0108] Thereafter , the scheduler 830 may be operable to
process the itinerary network using the topology to create a
plurality of tuple , such as flight tuples and hotel tuples . In an
example embodiment , the flight tuples may include at least
a departure date , a departure time , an arrival date , and an
arrival time . The hotel tuples may include at least a check - in
date , a check - in time , a check - out date , and a check - out time .
[0109] The scheduler 830 may be further operable to
analyze the plurality of tuples based on the itinerary request
and the dependencies between two or more nodes . In an
example embodiment , the analysis may include separation
of the plurality of tuples into groups . Each group may
correspond to one of the passengers . Furthermore , a partition
of the flight tuples may be selected for each of the one or
more passengers .
[0110] Based on the analysis , the scheduler 830 may be
operable to determine feasible itinerary solutions . In par
ticular , based on the hotel tuples and the partition of the
flight tuples , a content search may be performed to deter
mine the feasible itinerary solutions for each of the one or
more passengers . The feasible itinerary solutions may be
ranked by the scheduler 830 based on passenger preferences .
In an example embodiment , the passenger preferences are
determined based on the itinerary request or a preexisting
selection . The scheduler 830 may further identify identical
dependencies associated with each of the one or more
passengers based on the dependencies between two or more
nodes . In this embodiment , the ranking may be further based
on the identical dependencies .
[0111] The processor 810 may be further operable to
present at least one itinerary solution to the one or more
passengers . The at least one itinerary solution may be
selected from the feasible itinerary solutions based on the
ranking .
[0112] In some example embodiments , the parser 820 may
be further operable to identify a preexisting itinerary net
work associated with the passengers . In particular , the
preexisting itinerary network may be associated with previ
ous itinerary requests associated with the passengers . Upon
identification of the preexisting itinerary network , the parser
820 may update the preexisting itinerary network based on
the feasible itinerary solutions selected in response to the
itinerary request of the passenger .
[0113] FIG . 9 shows a diagrammatic representation of a
computing device for a machine in the exemplary electronic
form of a computer system 900 , within which a set of
instructions for causing the machine to perform any one or
more of the methodologies discussed herein can be
executed . In various exemplary embodiments , the machine
operates as a standalone device or can be connected (e.g. ,
networked) to other machines . In a networked deployment ,
the machine can operate in the capacity of a server or a client
machine in a server - client network environment , or as a peer
machine in a peer - to - peer (or distributed) network environ
ment . The machine can be a PC , a tablet PC , a set - top box ,
a cellular telephone , a digital camera , a portable music
player (e.g. , a portable hard drive audio device , such as an
Moving Picture Experts Group Audio Layer 3 player) , a web
appliance , a network router , a switch , a bridge , or any
machine capable of executing a set of instructions (sequen

tial or otherwise) that specify actions to be taken by that
machine . Further , while only a single machine is illustrated ,
the term “ machine ” shall also be taken to include any
collection of machines that individually or jointly execute a
set (or multiple sets) of instructions to perform any one or
more of the methodologies discussed herein .
[0114] The computer system 900 includes a processor or
multiple processors 902 , a hard disk drive 904 , a main
memory 906 , and a static memory 908 , which communicate
with each other via a bus 910. The computer system 900 may
also include a network interface device 912. The hard disk
drive 904 may include a computer - readable medium 920 ,
which stores one or more sets of instructions 922 embodying
or utilized by any one or more of the methodologies or
functions described herein . The instructions 922 can also
reside , completely or at least partially , within the main
memory 906 and / or within the processors 902 during execu
tion thereof by the computer system 900. The main memory
906 and the processors 902 also constitute machine - readable
media .
[0115] While the computer - readable medium 920 is
shown in an exemplary embodiment to be a single medium ,
the term " computer - readable medium ” should be taken to
include a single medium or multiple media (e.g. , a central
ized or distributed database , and / or associated caches and
servers) that store the one or more sets of instructions . The
term " computer - readable medium ” shall also be taken to
include any medium that is capable of storing , encoding , or
carrying a set of instructions for execution by the machine
and that causes the machine to perform any one or more of
the methodologies of the present application , or that is
capable of storing , encoding , or carrying data structures
utilized by or associated with such a set of instructions . The
term " computer - readable medium ” shall accordingly be
taken to include , but not be limited to , solid - state memories ,
optical and magnetic media . Such media can also include ,
without limitation , hard disks , floppy disks , NAND or NOR
flash memory , digital video disks , Random Access Memory
(RAM) , Read - Only Memory (ROM) , and the like .
[0116] The exemplary embodiments described herein can
be implemented in an operating environment comprising
computer - executable instructions (e.g. , software) installed
on a computer , in hardware , or in a combination of software
and hardware . The computer - executable instructions can be
written in a computer programming language or can be
embodied in firmware logic . If written in a programming
language conforming to a recognized standard , such instruc
tions can be executed on a variety of hardware platforms and
for interfaces to a variety of operating systems .
[0117] In some embodiments , the computer system 900
may be implemented as a cloud - based computing environ
ment , such as a virtual machine operating within a comput
ing cloud . In other embodiments , the computer system 900
may itself include a cloud - based computing environment ,
where the functionalities of the computer system 900 are
executed in a distributed fashion . Thus , the computer system
900 , when configured as a computing cloud , may include
pluralities of computing devices in various forms , as will be
described in greater detail below .
[0118] In general , a cloud - based computing environment
is a resource that typically combines the computational
power of a large grouping of processors (such as within web
servers) and / or that combines the storage capacity of a large
grouping of computer memories or storage devices . Systems

a

US 2022/0035880 A1 Feb. 3. 2022
10

that provide cloud - based resources may be utilized exclu
sively by their owners , or such systems may be accessible to
outside users who deploy applications within the computing
infrastructure to obtain the benefit of large computational or
storage resources .
[0119] The cloud may be formed , for example , by a
network of web servers that comprise a plurality of com
puting devices , such as a client device , with each server (or
at least a plurality thereof) providing processor and / or
storage resources . These servers may manage workloads
provided by multiple users (e.g. , cloud resource consumers
or other users) . Typically , each user places workload
demands upon the cloud that vary real - time , sometimes
dramatically . The nature and extent of these variations
typically depends on the type of business associated with the
user .

external computer (for example , through the Internet using
an Internet Service Provider) .
[0123] The corresponding structures , materials , acts , and
equivalents of all means or steps plus function elements in
the claims below are intended to include any structure ,
material , or act for performing the function in combination
with other claimed elements as specifically claimed . The
description of the present technology has been presented for
purposes of illustration and description , but is not intended
to be exhaustive or limited to the disclosure . Many modi
fications and variations will be apparent to those of ordinary
skill in the art without departing from the scope and spirit of
the disclosure . Exemplary embodiments were chosen and
described in order to best explain the principles of the
present technology and its practical application , and to
enable others of ordinary skill in the art to understand the
disclosure for various embodiments with various modifica
tions as are suited to the particular use contemplated .
[0124] Aspects of the present technology are described
above with reference to flowchart illustrations and / or block
diagrams of methods , apparatus (systems) , and computer
program products according to embodiments of the disclo
sure . It will be understood that each block of the flowchart
illustrations and / or block diagrams , and combinations of
blocks in the flowchart illustrations and / or block diagrams ,
can be implemented by computer program instructions .
These computer program instructions may be provided to a
processor of a general purpose computer , special purpose
computer , or other programmable data processing apparatus
to produce a machine , such that the instructions , which
execute via the processor of the computer or other program
mable data processing apparatus , create means for imple
menting the functions / acts specified in the flowchart and / or
block diagram block or blocks .
[0125] These computer program instructions may also be
stored in a computer readable medium that can direct a
computer , other programmable data processing apparatus , or
other devices to function in a particular manner , such that the
instructions stored in the computer readable medium pro
duce an article of manufacture including instructions which
implement the function / act specified in the flowchart and / or
block diagram block or blocks .
[0126] Thus , computer - implemented methods and sys
tems for translating user requests into itinerary solutions are
described . Although embodiments have been described with
reference to specific exemplary embodiments , it will be
evident that various modifications and changes can be made
to these exemplary embodiments without departing from the
broader spirit and scope of the present application . Accord
ingly , the specification and drawings are to be regarded in an
illustrative rather than a restrictive sense .
What is claimed is :
1. A system for changing an itinerary based on a user

itinerary change request , the system comprising :
a processor configured to :

receive an itinerary network associated with one or
more passengers ; and

receive the user itinerary change request associated
with the itinerary network ;

a parser configured to :
generate an itinerary object associated with the user

itinerary change request ; and
modify the itinerary network based on the itinerary

object ; and

[0120] It is noteworthy that any hardware platform suit
able for performing the processing described herein is
suitable for use with the technology . The terms " computer
readable storage medium ” and “ computer - readable storage
media ” as used herein refer to any medium or media that
participate in providing instructions to a CPU for execution .
Such media can take many forms , including , but not limited
to , non - volatile media , volatile media and transmission
media . Non - volatile media include , for example , optical or
magnetic disks , such as a fixed disk . Volatile media include
dynamic memory , such as system RAM . Transmission
media include coaxial cables , copper wire , and fiber optics ,
among others , including the wires that comprise one
embodiment of a bus . Transmission media can also take the
form of acoustic or light waves , such as those generated
during radio frequency (RF) and infrared (IR) data commu
nications . Common forms of computer - readable media
include , for example , a floppy disk , a flexible disk , a hard
disk , magnetic tape , any other magnetic medium , a CD
ROM disk , digital video disk , any other optical medium , any
other physical medium with patterns of marks or holes , a
RAM , a Programmable Read - Only Memory , an Erasable
Programmable Read - Only Memory (EPROM) , an Electri
cally Erasable Programmable Read - Only Memory , a
FlashEPROM , any other memory chip or data exchange
adapter , a carrier wave , or any other medium from which a
computer can read .
[0121] Various forms of computer - readable media may be
involved in carrying one or more sequences of one or more
instructions to a CPU for execution . A bus carries the data
to system RAM , from which a CPU retrieves and executes
the instructions . The instructions received by system RAM
can optionally be stored on a fixed disk either before or after

ecution by a CPU .
[0122] Computer program code for carrying out opera
tions for aspects of the present technology may be written in
any combination of one or more programming languages ,
including an object oriented programming language such as
Java , Smalltalk , C ++ or the like and conventional procedural
programming languages , such as the “ C ” programming
language or similar programming languages . The program
code may execute entirely on the user's computer , partly on
the user's computer , as a stand - alone software package ,
partly on the user's computer and partly on a remote
computer or entirely on the remote computer or server . In the
latter scenario , the remote computer may be connected to the
user's computer through any type of network , including a
LAN or a WAN , or the connection may be made to an

2

a

US 2022/0035880 A1 Feb. 3 , 2022
11

generating , by a parser , an itinerary object associated with
the user itinerary change request ;

modifying , by the parser , the itinerary network based on
the itinerary object ;

processing , by a scheduler , the itinerary network using a
topology of the itinerary network to create a plurality of
tuples , the plurality of tuples including at least flight
tuples and hotel tuples ;

performing , by the scheduler , a content search for the
plurality of tuples for each of the one or more passen
gers ; and

a

a scheduler configured to :
process the modified itinerary network using a topology

of the itinerary network to create a plurality of tuples ,
the plurality of tuples including at least flight tuples
and hotel tuples ;

perform a content search for the plurality of tuples for
each of the one or more passengers ; and

generate feasible itinerary solutions based on results of
the content searches .

2. The system of claim 1 , wherein the flight tuples include
at least a departure data , a departure time , an arrival date ,
and an arrival time ; and wherein the hotel tuples include at
least a check - in date , a check - in time , a check - out date , and
a check - out time .

3. The system of claim 1 , wherein the itinerary network
comprises two or more nodes and dependencies between the
two or more nodes , the two or more nodes being selected
from a group of : an origin city , a destination city , a hotel , a
date , a time , an airline , and a connection between flights .

4. The system of claim 3 , wherein the topology of the
itinerary network comprises at least an ordered list of the
two or more nodes .

5. The system of claim 3 , wherein the scheduler is further
configured to create an adjacency matrix of the modified
itinerary network based on a classification of the two or
more nodes based on the dependencies between the two or
more nodes .

6. The system of claim 3 , wherein the scheduler is further
configured to create a level matrix of the modified itinerary
network by selecting main nodes and child nodes that
depend on the main nodes from the two or more nodes in the
modified itinerary network and wherein the topology is
based on the level matrix .

7. The system of claim 1 , wherein the user itinerary
change request is provided via at least one of : a natural
language , a typed text , and a selection of preexisting options .

8. The system of claim 1 , wherein the user itinerary
change request is further associated with a group of passen
gers .

9. The system of claim 1 , wherein the scheduler is further
configured to :

partition , for each of the one or more passengers , the flight
tuples into one or more disjoint partition subsets , the
disjoint partition subsets determined based on a prop
erty of interest ; and

perform the content search for each disjoint partition
subset of the flight tuples and for each of the hotel
tuples .

10. The system of claim 9 , wherein the scheduler is
further configured to perform the content search across all
disjoint partition subsets for all passengers .

11. A computer - implemented method for changing an
itinerary based on a user change request , the method com
prising :

receiving , by a processor , an itinerary network associated
with one or more passengers ;

receiving , by the processor , a user itinerary change
request associated with the itinerary network ;

generating , by the scheduler , feasible itinerary solutions
based on results of the content searches .

12. The method of claim 11 , wherein the flight tuples
include at least a departure data , a departure time , an arrival
date , and an arrival time ; and

wherein the hotel tuples include at least a check - in date ,
a check - in time , a check - out date , and a check - out time .

13. The method of claim 11 , wherein the itinerary network
comprises least two or more nodes and dependencies
between the at least two or more nodes , the at least two or
more nodes being selected from a group of : an origin city ,
a destination city , a hotel , a date , a time , an airline , and a
connection between flights .

14. The method of claim 13 , wherein the topology of the
itinerary network comprises at least an ordered list of the
two or more nodes .

15. The method of claim 13 , wherein comprising creating ,
by the scheduler , an adjacency matrix of the modified
itinerary network based on a classification of the two or
more nodes based on the dependencies between the two or
more nodes .

16. The method of claim 13 , further comprising creating ,
by the scheduler , a level matrix of the modified itinerary
network by selecting main nodes and child nodes that
depend on the main nodes from the two or more nodes in the
modified itinerary network and wherein the topology is
based on the level matrix .

17. The method of claim 11 , wherein the user itinerary
change request is provided via at least one of : a natural
language , a typed text , and a selection of preexisting options .

18. The method of claim 11 , wherein the user itinerary
change request is further associated with a group of passen
gers .

19. The method of claim 11 , further comprising perform
ing , by the scheduler , a content search across all partition
subsets for all passengers .

20. The method of claim 11 , further comprising :
partitioning , by the scheduler , for each of the one or more

passengers , the flight tuples into one or more disjoint
partition subsets , the disjoint partition subsets deter
mined based on a property of interest ; and

performing , by the scheduler , the content search for each
disjoint partition subset of the flight tuples and for each
of the hotel tuples .

